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The other constants occurring in (75)–(79) are defined

by (74).

CONCLUSION

The authors felt it worthwhile

Minkowski’s work which led to

445

to incluc[e some of

(16)–(19). The au-.
thors are convinced of the futility of trying to de-

scribe constitutive parameters p, e and a of media in mo-

tion. As Minkowski realized, only those parameters in
a medium at rest N’, e’ and a’, have physical meanin~~.

With the aid of the Maxwell-Minliowski Equations,

we have derived and solved the wave equations for the

electric or the magnetic field, pertaining to the guided

waves in a circular or rectangular waveguide. The slolu-

tion is facilitated by the introduction of vector and

scalar potential-functions associated with this problem.

The results demonstrate that for a moving medium, the

fields, to the first-order of v/c differ in only two respects

from the fields obtained when the medium is at rest.

First, the propagation constant is modified by a term

which depends upon the velocity as well as the constitu-

tive constants of the stationary media, but is indepen-

dent of the cross section of the guide; seccmd, the trans-

verse-wave impedance or admittance is also modified by

a term which is independent of the dimension of the

guide.
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Generalized Solutions for Optical Maser Amplifiers

N. KUMAGAI, MEMBER, IEEE, AND H. YAMAMOTO, STUDENT, IEEE

Aixfracf—The optical maser amplifier is treated from the

transient analysis point of view using the Lap] ace transform method

as opposed to the conventional sinusoidal steady-state analysis that

sometimes leads to inconsistent results especially for the region

beyond threshold. Firstly, the wave equations are expressed in terms

of Laplace transforms, and then the generalized solutions for both

the transmission and the reflection mode of operation are derived

taking the transient terms into account. Finallly, the inverse Laplace

transforms are obtained yielding the generalized solutions in terms of

real-time functions. In order to emphasize the point of the argument

and also to compare the results of the usual sinusoidal steady-state

analysis, use is made of the simplest possible model of a one-

dimensional system consisting of three media, air, active medium,

and air. An incident coherent transverse electromagnetic wave, which

falls normally on the surface of the system, is assumed. The general-

ized solutions derived agree, in the region below threshold, exactb
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with that of the sinusoidal steady-state analysis obtained previously

by other investigators. However, for the region beyond critical

threshold, the generalized solutions indicate that the device goes

into a state of self-oscillation with oscillation frequencies that strictly

coincide with those of the Fabry-Perot type resonator. Thus, the

limitation of applicability of the conventional sinusoidal steady-state

analysis is clarified. Some remarks are also given on the clesign

problem of optical maser amplifiers in connection with the transient

terms involved.

INTRODUCTION

T

O THE AUTHORS’ ICN”OWLEDGE, most of

the theoretical treatments of an optical maser

amplifier reported so far have been based on the

sinusoidal steady-state analysis. The investigations by

Jacobs, et al. [1], [2] are typical of those approaches in

which the optical maser amplifier is treated as a trans-

mission-line or boundary-value problem in electro-
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magnetic theory under sinusoidal steady-state condi-

tions by replacing the time derivatives d/dt by jw. Al-

though some insight can be gained from such a treat-

ment, the analysis leads to some unreasonable conclu-

sions, especially for the region beyond threshold. That

is, the device still acts as an amplifier with finite and

specific amplification characteristics even in the region

beyond critical oscillation threshold. It is a well-known

fact, however, that, if the gain per transit overcomes the

total loss per transit, then feedback amplifiers such as

optical masers can no longer behave as an amplifier and,

instead, become oscillators whose performance is sub-

stantially independent of the input signal waves.

The purpose of the present paper is to derive the

generalized solution of the optical maser amplifier,

taking the transient terms into account, and to point

out the limitation of applicability of sinusoidal steady-

state analysis. In the following analysis, the optical

maser amplifier is conceived as a multilayer structure

and is treated on the transient theory point of view

with the Laplace transform method, replacing the time

derivatives d/dt by complex frequency s as opposed to

the conventional sinusoidal steady-state analysis. In

order to emphasize the essential point of the argument

and also to compare the results of sinusoidal steady-

state analysis, use is made of the simplest possible

model of the one-dimensional system consisting of three

media, air, active medium, and air. The transverse elec-

tromagnetic wave is assumed as an incident coherent

radiation that falls normally on the surface of the

system. It is possible, however, to extend the present

analysis to somewhat more complicated systems, such

as for instance, the five-layer structure consisting of air,

reflector, active medium, reflector, and air.

THEORY

La@lace Transforms of Wave Equations

A transverse electromagnetic wave (TEM) propagat-

ing the direction of the z axis in Cartesian coordinates is

described by the following one-dimensional scalar wave

equations:

dE (?H—

82 –
—P~

c?H aE
—.— vE—e —
az at

(1)

where e, p, and a are, respectively, the permittivity, per-

meability, and conductivity of the medium through

which the TENI wave propagates. E(z, t)represents the

x component of the electric field, whereas II(z, t)denotes

the y component of the magnetic field of the wave in

question.

Assuming the initial distribution of the wave as

E(z, O) = O

H(2, o) = o (2)

and introducing the complex frequency s = ~ +ju, the

Laplace transforms of the wave equation (1) becomes

dF

dz =
– psu

au
— CT(S)F — CSF

az––
(3)

where F(z, s) and U(ZY s) have been defined as Laplace

transforms of E(z, t) and .H(z, t), respectively. Partial-

differential equations for F and U alone can be yielded

from the foregoing equations:

(4)

and in particular, if I u(s) I << I es) 1,

—

dCT(s) p s
r=sdG+—

.

2 :=7
— a(s) (6)

where v = 1/ ~ep is a velocity of propagation of plane

wave in the medium. The general solutions for (4) are

F = Cle–rZ + CZer’

U = (l/Z) (C1e–r’ – C2erZ) (7)

in which we have defined

z= d ps

6s + CT(s)
(8)

C, and Cz in (7) are arbitrary constants that will be de-

termined by boundary conditions. Again, if the con-

ductivity of the medium is so small that I a(s) I <<l m 1,

(8) reduces simply to

(9)

Let the values of F and U at z = 1 be Fb and Ub, re-

spectively. Then, the arbitrary constants Cl and Cz in

(7) are specified, and, in turn, the expressions for F and

U at z = O, say ~. and il., can be written in the form

F. = Fb cosh 171+ zub sinh rl

U. = (~/.Z)Fb sinh rl + Ub cosh rl. (10)

Generalized ~olut ions for Optical Masey Amplifier

Let us consider now a simplified model of the optical

maser amplifier consisting of three layers as shown in

Fig. 1, each layer being infinite in both x and y planes.

Regions I and 111 are air, whereas region II is assumed

to be a linear, isotropic, and homogeneous active

medium having uniformly distributed negative con-

ductance. The incident electromagnetic plane wave
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Fiz. 1. One-dimensional model of outical maser amdilier cons. istinz
of three media, air, acti;e medium, and ‘air.

travels from region I through III along the z axis, i.e.,

normally to the planar surfaces of each layer. The wave

suffers a reflection and transmission at both boundary

surfaces a and b and multiple internal reflections and

amplification in the active region I I Thus, the trans-

mission system indicated in Fig. 1 is equivalent to the

one-dimensional model of a Fabry-Perot interferometer

with an active medium inserted between the pair of op-

posing reflecting surfaces.

In regions I and III, where a = O, (5) and (8) become

rO = SVCOWO = S/C

z, = dqeo (11)

where eo and LLO are the permittivity and permeability

of air, respectively, and c = l/v%j70 represents the

velocity of light in the air.

On the other hand, the conductivity a in the active

medium of region II can be described in the following

form [3]:

U(jco) = jqy (@) (12)

where

Xo
X(jm) =

w — wo — J“A<ti

where it is assumed that the spectral line of stimulated

emission of radiation has a Lorentzian shape with full

width at half-maximum of 2Aw centered about angular

frequency OJO.XO is a positive constant whose magnitude

depends on the intensity of the pump power supplied

into the active medium.

Replacing ju by complex frequency s, the Laplace

transform of (12) becomes

a(s) = Sx (s) (13)

where

—Xo
x(s) =

OJO + js + jAtit

Thus, in the region II,

rz = s<I.JIc.+ x(s)}

(14)

where e and p refer to the permittivity and perrneab]lity

of the active medium, respectively. Since, in practice,

I X(S) I can be regarded much smaller than ] c1, (14) can

be written in the form similar to (6) and (9):

(15)

where

du(s) ; d“
Sx(s) ~–

a(s) = — —._— —- (16)
2 E 2 e

It should be noted that the real part of a(s) in (1 !5) is

positive in sign and hence is referred to the amplification

constant per unit length in an active medium.

In order to formulate the boundary-value problem,

let us define the following notations: Fi(S)I and ZT,(S)

for the Laplace transforms of electric and magnetic

fields of incident wave traveling in region I toward

region II, F~(s) and Ur(s) for that of reflected wave re-

flecting from boundary a, and F,(s) and Ut (s) for that

of transmitted wave leaving from boundary b. It wi 11be

assumed further that the region I and I I I are semi-

infinite in the z direction so that there would be no

reflected waves in both regions. Then, the Laplace

transforms of electric and magnetic fields at boundary a,

say F.(s) and U.(S), respective y, can be expressed as

F.= F,+F,

U. = tii + 11,. (17]

Similarly, at boundary b,

In addition,

F~ F, F,
= Zo

ii= u,= ‘ii

(19)

where ZO is the intrinsic imped ante in free space given

by (11).

On the other hand, referring to (10),

where 1 is the length of the active region I I as shown in

Fig. 1. Substituting (17), (18), and (19) into (20),

F;+ F, = F, cosh rL,l + (ZL/ZJF, sinh ~Ll

F, – Fr = (Z~/ZL) F, sinh rLl + F, COShrLl (21)

from which

F, 1
= Y,(s) (22)

E= cosh rLl + A sinh ~Ll
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F, B sinh I’~1

F; =
= Y,(s) (23)

cosh ~L~ + A sinh FL1

where

‘=+(;+%)”
‘=x%%) (24)

Note that, if 2.> ZL,

B=–~A2–l. (25)

The poles of the functions Y,(s) and Y,(s) defined by

(22) and (23), respectively, are given by

s. = 2 (anz – L,) (af) + y-w. (26)

where

@n = wr(fl/1) , af = (v/21),

ZO+ZL;
a. = Re CZ(SJ, L, = In

,ZO – ZL

and n is integer. Re a(sn) denotes the real part of a(sn),

and L, represents the reflection loss at boundary surface

a or b. [See (47), (48), and (50) in Appendix. ]

Now, the inverse Laplace transforms of F,(S) and

Fr(s) given by (22) and (23), respectively, yield the

transmitted and reflected electric fields in terms of the

function of time:

$+im

-&(t) = : s F;(s) V~(S)e’?iS
2~’J f–j~

l?,(t) = & ~f~~F;(s) Y,(s) e’fds. (27)

If the incident electric field is assumed to be

{

o, t<o

E,(t) =
EOe@’, t>o.

(28)

Fi(s), the Laplace transform of E;(t), is simply given by

EO
Fi(s) = — .

s—jw

Finally, substituting (22), (23), and (29)

performing the evaluation of the inverse

grals, we obtain the generalized solutions

layer optical maser amplifier involving

terms as follows (see Appendix):

EOe@t
E,(t) =

cosh yLi + A sinh yLl

(29)

into (27) and

Laplace inte-

for the three-

the transient

+ ~. (– l)”l?n exp [2(cd – L) (8f)t + jw.t] (30)

BEOeiwt sinh yLl
E,(t) =

cosh yLl + A sinh ~Ll

where

==j(3 – Ck!(jw)

‘“ = I B \ r’(sn)l~ 2(%1 -“;,)(df) +j(wn - CO)}

dr(s)
r’(sn) = —

ds S=Sn“

Solutions in Stable Region

If the magnitude of amplification of the wave per

round trip of propagation through the active medium is

smaller than the total reflection loss, the system would

be stable. In such a case, a,l –L. <0, so that the second

terms in both (30) and (31) vanish in the limit when the

time t approaches infinity; hence, the transmitted and

reflected electric fields can be expressed only by the non-

vanishing first terms alone:

Eoe@t
E,(t) =

cosh yLl + A sinh YL1
(32)

BEOe~W’sinh yLl
E,(t) = (33)

cosh YL1 + A sinh yLl

The foregoing expressions strictly agree with Jacobs’

sinusoidal steady-state solutions as would be expected

since all the transient terms should vanish at steady

state.

In order to discuss briefly the amplification character-

istics of the device in such a stable region, let us assume

the following approximations for simplicity:

where

Then, the power gain in the transmission mode of opera-

tion can be found from (32) using (34):

& 2

E=

Solving d/dll

we have

1

(cosh al – A sinh al)’ + B2 sin’@
. (35)

EJEil 2= O under the assumption of a<<~,

@ = 7z(7r/2) or 1 = n(A/4) (36)

where n is integer. The transmission gain becomes maxi-

ma for even number of n in (36). That is,

6’1 = mr (37)
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Fig. 2. The magnitude of amplitude amplification for a three-layer
optical maser amplifier in the transmission mode of operation.

where m is integer. The minima of transmission gain

would occur for odd number of n. Namely,

@ == (2??2 i- l)(T/2) . (38)

On the other hand, the power gain in the reflection

mode of operation is yielded from (33) using (34):

E, t A sinh 2od – cash 2al
=1+

(cosh al – A sinh al)’ + B’ sin’@
. (39)

E~

The particular length of 1 for which d/dl I E,/E, 12= O is

also given by (36) under the same assumption. It should

be noted, however, that, if O <al< $ coth-’ A = L,/2, the

numerator of the second term on the right-hand side of

(39) becomes negative, and hence the minima of the

reflection gain will occur at @ = m~ and the maxima at

@= (2m+ l)7r/2. For L,/2 <al <L,, to the contrary,

A sinh 2al –cosh 2cd> O, so that the condition on 1 be-

comes entirely the same as that for the case of the trans-

mission mode of operation. That is, the reflection gain

becomes maxima at @= m~ and minima at @= (2m

+l)7r/2.

Let us illustrate by a numerical example using the

following parameters:

f = 4.319x lo” (c/s)

~ = 3.11560

~ = 5080” (cm–l).

20 -

15 -

10 -

5 -

f= 4.319 x lo’’ (c/s)

&= 3. 115E0

la 1=5080 (cm-])

STABLE REGION

J<

,
0123456

UNSTABLE RIIGIOl

/, Ialz=L,

——.-
‘7 8

l_
x ‘-

Fig. 3. The magnitude of amplitude amplification for a three. layer
optical maser amplifier in the reflection mode of operation.

The calculated amplification characteristics for trans-

mission and reflection type of operation are shown in

Figs. 2 and 3, respectively. In this particular example,

the critical threshold for oscillation is given by Z/k ==6.42

at which the gain per transit becomes equal to the loss

per transit, i.e., a.1 = L,. Note that the discussion ~~,iven

in this section is restricted only within the stable region

below this critical threshold. The foregoing ana[ysis,

together with the numerical example, indicates that, in

order to achieve the maximum gain, the length of an

active medium should be designed as long as possible

within the region below threshold, satisfying the maxi-

mization condition just stated.

It is also to be pointed out that, if the length 1 is

chosen too close to the critical threshold so that

CGJ—L,=O, a time rate of decay of transient terms

would become so slow that somewhat undesirable

effects against amplification of the signal may become

appreciable.

Solutions in Unstable Region

In the region above critical threshold for which

~~1 — Lr >0, the system becomes unstable since the am-

plification gained per transit overcomes the reflection

loss per transit. More strictly, the second terms in both

(30) and (31) become infinity in the limit when time t

approaches infinity so that the magnitudes of solutions

for both transmitted and reflected waves become in-

finity. Practically, however, the magnitudes of the fields



450 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES July

never increase up to infinity even in the limit of td co

because of the saturation of the gain which is due to the

nonlinearity of the interaction between fields and mat-

ter. Instead, the system maintains a self-oscillation with

finite amplitude En,o,., whose magnitude depends on the

nonlinear characteristic of an active medium involved

which is beyond the scope of our discussion. For such a

final steady-oscillation state, the (nonlinear) gain anl

becomes equal to the loss L,, and hence the second

terms in (30) and (31), respectively, can be expressed in

the following form:

J%,.,. = 5 (– l)”En,o,cf+’

n=’i

where both i and k are the particular integral number

of n in the sense that, for ; ~ n ~ k, the oscillation con-

dition aJ – L, >0 is satisfied.

The oscillation frequencies f. or the oscillation wave-

lengths h. are given by

where n is integer. Equation (40) just coincides with

well-known oscillation frequencies in the Fabry-Perot

laser resonators. ~f represents the separation between

adjacent frequencies of the resonance. In other words,

the system oscillates, in the region beyond critical

threshold, with finite amplitude and specific frequencies

f% given by (40) which are entirely independent of the

input signal waves.

Conversely, as long as we treat the problem on the

basis of sinusoidal steady-state analysis such as, for

instance, Jacobs’ approach, it seems to be impossible to

obtain these results and, instead, some inconsistent con-

clusions such as a finite and specific amplification char-

acteristic in the unstable region is yielded, even though

the theory is entirely linear.

CONCLUSIONS

The generalized solutions for the Fabry-Perot type

three-layer optical maser amplifier were derived on the

basis of a transient analysis point of view taking the

transient terms into account. As a result, it was shown

that the generalized solutions below threshold agree

exactly with the sinusoidal steady-state solutions ob-

tained so far by Jacobs et al. and that, beyond critical

threshold, the device becomes unstable, resulting in the

self-oscillations with particular oscillating frequencies

which strictly agree with the well-known resonant fre-

quencies of Fabry-Perot type optical masers. Some re-

marks were also given on the design problem of optical

maser amplifiers in connection with transient terms

involved.

APPENDIX

EVALUATION OF THE INVERSE LAPLACE TRANSFORMS

The inverse Laplace integrals to be evaluated are

f+im

E,(t) = ;
s

F~(s) Ft(s)e’%
2TJ f_jm

(41)

where l’,(s), Y,(s), and Fi(s) are given by (22), (23),

and (29), respectively. The evaluation of the integrals in

(41) and (42) are performed by utilizing the Cauchy

fundamental integral theorem (see, e.g. [4]) based on

the theorem of sum of residues taking a closed contour

ABCDA on the complex plane s as shown in Fig. 4.

The path is selected in such a manner that the inte-

grands of both (41) and (42) be regular within the region

of Re s ~ ~. Furthermore, qP is chosen as

VP = (2F + 2q + l)(6f)7r (43)

where P is integer, q is integer satisfying q>>L./r and

also q>>co/2m(8f), so that the contour does not pass into

or over singularities of the integrands.

jy I S-plane

‘Ftv”

Fig. 4. Contour take? on the complex plane s used in
computing the reverse Laplace integrals.

Then, it can be shown that the contributions of the

Iine integral along a path AB CD, say C,, indicated by

a solid Iine in Fig. 4, vanish in the limit when qP ap-

proaches infinity:

lim r F(s) Y(s)es%’.$~O. (44)
?D+- J Cp

Next, the residue for the pole jw of

given as

@~ = EO Yt(jw)e@t.

The pole S. of Y,(s) is determined by

coth r~(s.)1 = – A.

F.(s) in (41) is

(45)

(46)
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exp [2r~(~n)l] =
s= (:-::Y”R2
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According to the Cauchy fundamental integral theorem,

(47)
the closed line integral along a closed contour A B L’DA

can now be given by the sum of all these residues en-

R, defined by (47), represents the reflection coefficient
closed. On the other hand, the contributions along a

at the boundary surface a or b. Therefore, if we set as
path C, vanish in the limit when 7P approaches infinity

as shown in (44). Accordingly,

R = ~–L, (48)

+ J

E+jm
lim F(s) Y(s)e’%k =

then L, denotes the reflection loss at those boundary
F(s) I’(s)e”ds

77.+ m ?—;@
surfaces. Using the foregoing relation, (47) becomes

. .

= 27ri2(dl + R). (54)

Remembering

e>> ] x(s) 1, the

(15), as

r(~n)l = – L, + jmr.
. . . .

(49)
.,

Finally, substituting (45) and (51) or (52) and (53) into

that, in the most practical cases, the foregoing equation, the transmitted and reflected

pole S. can be written, with the aid of electric fields can be expressed in terms of the function

s. = 2 (%1 – L,) (8f) + j% (50) ‘f

The residue for this pole S. is

Similarly, the residue for the pole c,f F,(s) in (42) is ‘1]

given by
@, = EOl’,(jti)e~wi (52) PI

and for the pole of Y,(s), [3]

EOes’t

“ = I B I r’(sn)l(sn - j,~ “
(53) [4]

time as follows:

ll~(t) = EOY~(jco)e@t + ~n (– l)nEne’~t (55)

E,(t) = E. Y,(jco)ejwt + ~n EneS’t. (56)
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Characteristics of Loaded Rectangular Waveguides

Y. MUSHIAKE, SENIOR MEMBER, IEEE, AND T. ISHIDA

Abstract—Electromagnetic fields of a rectangular waveguide

with an arbitrarily loaded slab are theoretically analyzed. Eigen-

values for the transmission modes are presented in the form of

universal eigenvalue charts. Electric field distributions in the loaded

waveguide are obtained theoretically, and they are compared with

the results of measurements. Power attenuation is also discussed,

and attenuation charta that give the lowest limitation for the attenu-

ation are shown. As an example of application the attenuation char-

acteristics of waveguide resistance attenuatora are investigated,

and a new interpretation is derived for the phenomena where the

curves of attenuation characteristic have sharp peak points.
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1, INTRODUCTION

T

HE TRANSL~ ISSION characteristics of a rec-

tangular waveguide loaded with a dielectric slab or

resistive strip at the center of the waveguide

parallel to the electric field have already been anallyzed

by several investigators [1 ]– [4 ]. However, the char-

acteristics for a general case where the slab with an iarbi-

trary admittance is loaded at a place with various

distances from the side wall have not been given [5, ].

The purpose of this paper is to present such characteri-

stics of the waveguides with some charts that show the

dependence of the characteristics to the various

parameters.


