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Ymnm = _I:i(kz - kmng)”‘rl — 4 ]' (80)
wu 2

The other constants occurring in (75)—(79) are defined
by (74).
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CONCLUSION

The authors felt it worthwhile to include some of
Minkowski’'s work which led to (16)—(19). The au-
thors are convinced of the futility of trying to de-
scribe constitutive parameters u, € and ¢ of media in mo-
tion. As Minkowski realized, only those parameters in
a medium at rest u/, ¢ and ¢/, have physical meaning.

With the aid of the Maxwell-Minkowski Equations,
we have derived and solved the wave equations for the
electric or the magnetic field, pertaining to the guided
waves in a circular or rectangular waveguide. The solu-
tion is facilitated by the introduction of wvector and
scalar potential-functions associated with this problem.
The results demonstrate that for a moving medium, the
fields, to the first-order of v/¢ differ in only two respects
from the fields obtained when the medium is at rest.
First, the propagation constant is modified by a term
which depends upon the velocity as well as the constitu-
tive constants of the stationary media, but is indepen-
dent of the cross section of the guide; second, the trans-
verse-wave impedance or admittance is also modified by
a term which is independent of the dimension of the
guide.

ACKNOWLEDGMENT

The authors wish to thank D. L.. Moffatt for reading
the manuscript, and improving the presentation.
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Abstract—The optical maser amplifier is treated from the
transient analysis point of view using the Laplace transform method
as opposed to the conventional sinusoidal steady-state analysis that
sometimes leads to inconsistent results especially for the region
beyond threshold. Firstly, the wave equations are expressed in terms
of Laplace transforms, and then the generalized solutions for both
the transmission and the reflection mode of operation are derived
taking the transient terms into account. Finally, the inverse Laplace
transforms are obtained yielding the generalized solutions in terms of
real-time functions. In order to emphasize the point of the argument
and also to compare the results of the usual sinusoidal steady-state
analysis, use is made of the simplest possible model of a one-
dimensional system consisting of three media, air, active medium,
and air. An incident coherent transverse electromagnetic wave, which
falls normally on the surface of the system, is assumed. The general-
ized solutions derived agree, in the region below threshold, exactly
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with that of the sinusoidal steady-state analysis obtained previously
by other investigators. However, for the region beyond critical
threshold, the generalized solutions indicate that the device goes
into a state of self-oscillation with oscillation frequencies that strictly
coincide with those of the Fabry~Perot type resonator. Thus, the
limitation of applicability of the conventional sinusoidal steady-state
analysis is clarified. Some remarks are also given on the design
problem of optical maser amplifiers in connection with the transient
terms involved.

INTRODUCTION

O THE AUTHORS KNOWLEDGE, most of

I the theoretical treatments of an optical maser
amplifier reported so far have been based on the
sinusoidal steady-state analysis. The investigations by
Jacobs, et al. [1], [2] are typical of those approaches in
which the optical maser amplifier is treated as a trans-
mission-line or boundary-value problem in electro-
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magnetic theory under sinusoidal steady-state condi-
tions by replacing the time derivatives d/dt by jw. Al-
though some insight can be gained from such a treat-
ment, the analysis leads to some unreasonable conclu-
sions, especially for the region beyond threshold. That
is, the device still acts as an amplifier with finite and
specific amplification characteristics even in the region
beyond critical oscillation threshold. It is a well-known
fact, however, that, if the gain per transit overcomes the
total loss per transit, then feedback amplifiers such as
optical masers can no longer behave as an amplifier and,
instead, become oscillators whose performance is sub-
stantially independent of the input signal waves.

The purpose of the present paper is to derive the
generalized solution of the optical maser amplifier,
taking the transient terms into account, and to point
out the limitation of applicability of sinusoidal steady-
state analysis. In the following analysis, the optical
maser amplifier is conceived as a multilayer structure
and is treated on the transient theory point of view
with the Laplace transform method, replacing the time
derivatives d/dt by complex frequency s as opposed to
the conventional sinusoidal steady-state analysis. In
order to emphasize the essential point of the argument
and also to compare the results of sinusoidal steady-
state analysis, use is made of the simplest possible
model of the one-dimensional system consisting of three
media, air, active medium, and air. The transverse elec-
tromagnetic wave is assumed as an incident coherent
radiation that falls normally on the surface of the
system. It is possible, however, to extend the present
analysis to somewhat more complicated systems, such
as for instance, the five-layer structure consisting of air,
reflector, active medium, reflector, and air.

THEORY

Laplace Transforms of Wave Equations

A transverse electromagnetic wave (TEM) propagat-
ing the direction of the z axis in Cartesian coordinates is
described by the following one-dimensional scalar wave
equations:

or oH

— = g

0z at

oH oE

= —GE—e— 1)
9z ot

where €, u, and o are, respectively, the permittivity, per-
meability, and conductivity of the medium through
which the TEM wave propagates. E(z, {) represents the
x component of the electric field, whereas H(z, ¢) denotes
the ¥ component of the magnetic field of the wave in
question.

Assuming the initial distribution of the wave as

E(z,0)=0
H(z,0)=0 (2)
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and introducing the complex frequency s=£-+jw, the
Laplace transforms of the wave equation (1) becomes

oF U

—_— = — s

Jdz K

oU

— = — G(s)F — &F @3)
Jz

where F(z, s) and U(z, s) have been defined as Laplace
transforms of E(z, t) and H(z, i), respectively. Partial-
differential equations for F and U alone can be yielded
from the foregoing equations:

0%F
R 1
0z?
oU Ty (4)
J9z2 h
where
I = \/,us{eS + 0(5)7 (5)

and in particular, if ]a(s)]<<\es) [,

o(s) 7_ s

where v=1/+/eu is a velocity of propagation of plane
wave in the medium. The general solutions for (4) are

F C]_G_Fz + Czerz
U= (1/Z)(CieF* — Cre™™) @)

I'=sv/en +

f

i

in which we have defined

— 5
g o

€S + J(S)
Ciand C;in (7) are arbitrary constants that will be de-
termined by boundary conditions. Again, if the con-

ductivity of the medium is so small that la(s)f<<]es[,
(8) reduces simply to

Z = /e ®

Let the values of F and U at z=] be F, and U, re-
spectively. Then, the arbitrary constants Cy and C; in
(7) are specified, and, in turn, the expressions for F and
U at =0, say F, and U,, can be written in the form

F, = Fycosh Tl 4+ ZU,sinh IV

U, = (1/Z)Fysinh Tl + Uy cosh TL. (10)

Generalized Solutions for Optical Maser Amplifier

Let us consider now a simplified model of the optical
maser amplifier consisting of three layers as shown in
Fig. 1, each layer being infinite in both x and y planes.
Regions I and III are air, whereas region II is assumed
to be a linear, isotropic, and homogeneous active
medium having uniformly distributed negative con-
ductance. The incident electromagnetic plane wave
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Fig. 1. One-dimensional mode! of optical maser amplifier consisting

of three media, air, active medium, and air.

travels from region I through III along the z axis, i.e.,
normally to the planar surfaces of each layer. The wave
suffers a reflection and transmission at both boundary
surfaces ¢ and b and multiple internal reflections and
amplification in the active region Il. Thus, the trans-
mission system indicated in Fig. 1 is equivalent to the
one-dimensional model of a Fabry-Perot interferometer
with an active medium inserted between the pair of op-
posing reflecting surfaces.

In regions I and III, where 0 =0, (5) and (8) become

To = svemo = s/¢
= /uo/e (11)

where ¢, and uo are the permittivity and permeability
of air, respectively, and c¢=1/+/ejuy represents the
velocity of light in the air.

On the other hand, the conductivity ¢ in the active
medium of region II can be described in the following
form [3]:

o(jo) = jox(je) (12)

where

. Xo
x(jo) = ——————
w — wo — JAw
where it is assumed that the spectral line of stimulated
emission of radiation has a Lorentzian shape with full
width at half-maximum of 2Aw centered about angular
frequency wo. Xo is a positive constant whose magnitude
depends on the intensity of the pump power supplied
into the active medium.
Replacing jw by complex frequency s, the Laplace
transform of (12) becomes
a(s) = sx(s) (13)
where

— X0

) = s jhe

Thus, in the region II,

Iz = svufe+ x(s)}
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’
Zy = 1/ — (14)
e + x(s)
where € and u refer to the permittivity and permeability
of the active medium, respectively. Since, in practice,
lx(s)[ can be regarded much smaller than fe] , (14) can
be written in the form similar to (6) and (9):

S
FLZ——Q(S)
v

JE
TV

It should be noted that the real part of a(s) in (15) is
positive in sign and hence is referred to the amplification
constant per unit length in an active medium.

In order to formulate the boundary-value problem,
let us define the following notations: Fi(s) and U.(s)
for the Laplace transforms of electric and magnetic
fields of incident wave traveling in region I toward
region II, F.(s) and U,(s) for that of reflected wave re-
flecting from boundary a, and F.(s) and U,(s) for that
of transmitted wave leaving from boundary b. It will be
assumed further that the region I and IIl are semi-
infinite in the z direction so that there would be no
reflected waves in both regions. Then, the Laplace
transforms of electric and magnetic fields at boundary a,
say F,(s) and U,(s), respectively, can be expressed as

Zy = (15)

where

a(s) = (16)

Fa = Fi + Fr
U,=U;+ U.,. an
Similarly, at boundary b,
Fb=Ft, []b:Ut (18)
In addition,
F;, F, F,
—=—= - — =7, (19)
v, U, U,

where Z, is the intrinsic impedance in free space given
by (11).
On the other hand, referring to (10),
F, = FycoshT'zl + Z,Uysinh Tzl

Ua = (1/ZL)F1, sinh FLl + lfb COSh I‘Ll (20)

where [ is the length of the active region Il as shown in

Fig. 1. Substituting (17), (18), and (19) into (20),
F;+ F,=Fycosh 'l + (Z1/Ze)Fysinh Tl
F.— Fp= (ZofZ1)F,sinh Tl 4 F,cosh Tz (21)

from which

F, 1
- = s = Vis)
F; coshTil+ Asinh Tzl

(22)
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F, Bsinh 'zl
—= ; = V.(s) (23)
F; coshTrl+4+ AsinhI';l
where
1 /7 VA
A= ~<—L + —0) > 1
2 \Z, Z
1 /7 VA
B=——<—"——°>. (24)
2 \Zy Zy
Note that, if Z¢>Z;,
B=— A2 -1 . (25)

The poles of the functions ¥,(s) and ¥,(s) defined by
(22) and (23), respectively, are given by

Sn = 2(and — L) (®f) + joou (26)
where
Wn = n7r(7)/l), 5f = (‘U/ZZ))
Z Zr
w = Rea(s), I =In| 22122
VARSA)

and # is integer. Re a(s,) denotes the real part of a(s,),
and L, represents the reflection loss at boundary surface
a or b. [See (47), (48), and (50) in Appendix. ]

Now, the inverse Laplace transforms of F:(S) and
F.(s) given by (22) and (23), respectively, yield the
transmitted and reflected electric fields in terms of the
function of time:

1 E+ioo
E() = — Fi(s) Y (s)estds
277.7 §—joo
1 £+
E () = — F.(s) V. (s)estds. 27N
21 J i
If the incident electric field is assumed to be
E0) {0, 1 <0 (28)
ST \Eeetet, 1> 0.
Fi(s), the Laplace transform of E;(}), is simply given by
Ey
Fi(s) = - (29)
s — jw

Finally, substituting (22), (23), and (29) into (27) and
performing the evaluation of the inverse Laplace inte-
grals, we obtain the generalized solutions for the three-
layer optical maser amplifier involving the transient
terms as follows (see Appendix):

E()ej‘”

E(t) = :

cosh vzl + A sinh vyl

+ > u (—1)"E, exp [2(anl — L)) + jout]  (30)
E() = BEgei“t sinh vl

cosh v/ + A sinh v/

+ 2 0 Enexp [2(an — L) (3f)t + jent] (31)
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where

“:f“\/mzjiJrMVf_
v 2 ¢

= j8 — a(jw)
Ey
E, =
| B] T (s)1{ 2(cnl — L)) + j(wn — w)}
, _ dr(s)
s = ds ls=s,

Solutions in Stable Region

If the magnitude of amplification of the wave per
round trip of propagation through the active medium is
smaller than the total reflection loss, the system would
be stable. In such a case, a,l— L, <0, so that the second
terms in both (30) and (31) vanish in the limit when the
time ¢ approaches infinity; hence, the transmitted and
reflected electric fields can be expressed only by the non-
vanishing first terms alone:

Eoef”‘
E(t) = ; (32)
cosh vzl + A sinh vyl
BEe%t sinh vyl
B(t) = ’ e (33)

cosh vzl -+ A sinh vyl .

The foregoing expressions strictly agree with Jacobs’
sinusoidal steady-state solutions as would be expected
since all the transient terms should vanish at steady
state.

In order to discuss briefly the amplification character-
istics of the device in such a stable region, let us assume
the following approximations for simplicity:

ve = J8 — a(jo) ~j8 — @ (34)

where

X0 9 Aw
= Real(ie) = 224/ 2 .
* e alje) 2 € (w0 — wy)? + (Aw)?

Then, the power gain in the transmission mode of opera-
tion can be found from (32) using (34):
2 1

E,
E;,  (coshal — A sinh al)? + B?sin? 8

Z (35)

Solving d/dli E/E;
we have

2=0 under the assumption of a<g,

1 = n(\/4) (36)

where % is integer. The transmission gain becomes maxi-
ma for even number of % in (36). That is,

Bl = n(r/2) or

(37

Bl = mw
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Fig. 2. The magnitude of amplitude amplification for a three-layer
optical maser amplifier in the transmission mode of operation.

where m is integer. The minima of transmission gain
would occur for odd number of #. Namely,

8l = Qm + 1)(x/2).

On the other hand, the power gain in the reflection
mode of operation is yielded from (33) using (34):

(38)

2 A sinh 2al — cosh 20l

- (39
(cosh ol — A sinh al)? - B?sin® 8l )

The particular length of / for which d/dl] E,/Ez] 2=0is
also given by (36) under the same assumption. It should
be noted, however, that, if 0 <al <% coth™ 4 =L,/2, the
numerator of the second term on the right-hand side of
(39) becomes negative, and hence the minima of the
reflection gain will occur at 8/ =mw and the maxima at
Bl=@m~+1)w/2. For L,/2<al<L, to the contrary,
A sinh 2al —cosh 2al>0, so that the condition on / be-
comes entirely the same as that for the case of the trans-
mission mode of operation. That is, the reflection gain
becomes maxima at Bl=mm and minima at fl=(2m
+Dw/2.

Let us illustrate by a numerical example using the
following parameters:

f = 4319 X 10" (c/s)
e = 3.115¢

I

5080 (cmY).

o
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Fig. 3. The magnitude of amplitude amplification for a three-layer
optical maser amplifier in the reflection mode of operation.

The calculated amplification characteristics for trans-
mission and reflection type of operation are shown in
Figs. 2 and 3, respectively. In this particular example,
the critical threshold for oscillation is given by //A = 6.42
at which the gain per transit becomes equal to the loss
per transit, i.e., .l =L,. Note that the discussion given
in this section is restricted only within the stable region
below this critical threshold. The foregoing analysis,
together with the numerical example, indicates that, in
order to achieve the maximum gain, the length of an
active medium should be designed as long as possible
within the region below threshold, satisfying the maxi-
mization condition just stated.

It is also to be pointed out that, if the length 7 is
chosen too close to the critical threshold so that
a,]—L~0, a time rate of decay of transient terms
would become so slow that somewhat undesirable
effects against amplification of the signal may become
appreciable.

Solutions in Unstable Region

In the region above critical threshold for which
anl— L,>0, the system becomes unstable since the am-
plification gained per transit overcomes the reflection
Joss per transit. More strictly, the second terms in both
(30) and (31) become infinity in the limit when time ¢
approaches infinity so that the magnitudes of solutions
for both transmitted and reflected waves become in-
finity. Practically, however, the magnitudes of the fields
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never increase up to infinity even in the limit of -
because of the saturation of the gain which is due to the
nonlinearity of the interaction between fields and mat-
ter. Instead, the system maintains a self-oscillation with
finite amplitude E, osc, whose magnitude depends on the
nonlinear characteristic of an active medium involved
which is beyond the scope of our discussion. For such a
final steady-oscillation state, the (nonlinear) gain .l
becomes equal to the loss L,, and hence the second
terms in (30) and (31), respectively, can be expressed in
the following form:

k

Ei,osc = Z (hl)nEn,oscejwnt

=1

k&
Er,osc = Z En,oscew"t

n=i

where both 7 and % are the particular integral number
of # in the sense that, for :<n <k, the oscillation con-
dition a,l—L,>0 is satisfied.

The oscillation frequencies f, or the oscillation wave-
lengths A, are given by

7 2]
f,=—=mn—=nmn(f) or A\ =— (40)
T 21 n

where #» is integer. Equation (40) just coincides with
well-known oscillation frequencies in the Fabry-Perot
laser resonators. §f represents the separation between
adjacent frequencies of the resonance. In other words,
the system oscillates, in the region beyond critical
threshold, with finite amplitude and specific frequencies
f« given by (40) which are entirely independent of the
input signal waves.

Conversely, as long as we treat the problem on the
basis of sinusoidal steady-state analysis such as, for
instance, Jacobs’ approach, it seems to be impossible to
obtain these results and, instead, some inconsistent con-
clusions such as a finite and specific amplification char-
acteristic in the unstable region is yielded, even though
the theory is entirely linear.

CONCLUSIONS

The generalized solutions for the Fabry-Perot type
three-layer optical maser amplifier were derived on the
basis of a transient analysis point of view taking the
transient terms into account. As a result, it was shown
that the generalized solutions below threshold agree
exactly with the sinusoidal steady-state solutions ob-
tained so far by Jacobs et al. and that, beyond critical
threshold, the device becomes unstable, resulting in the
self-oscillations with particular oscillating frequencies
which strictly agree with the well-known resonant fre-
quencies of Fabry-Perot type optical masers. Some re-
marks were also given on the design problem of optical
maser amplifiers in connection with transient terms
involved.
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APPENDIX
EvALUATION OF THE INVERSE LAPLACE TRANSFORMS

The inverse Laplace integrals to be evaluated are

1 Egm
Et) = — Fi(s) Yi(s)estds (41
215V o
1 &t jeo
E(l) = — F.(s) Y, (s)ectds (42)
M) v f—jwo

where V.(s), Y.(s), and F(s) are given by (22), (23),
and (29), respectively. The evaluation of the integrals in
(41) and (42) are performed by utilizing the Cauchy
fundamental integral theorem (see, e.g. [4]) based on
the theorem of sum of residues taking a closed contour
ABCDA on the complex plane s as shown in Fig. 4.
The path is selected in such a manner that the inte-
grands of both (41) and (42) be regular within the region
of Re s> £. Furthermore, 7, is chosen as

1= (2p + 2¢ + 1))

where p is integer, ¢ is integer satisfying ¢>>L,/m and
also ¢>>w/27w(8f), so that the contour does not pass into
or over singularities of the integrands.

(43)

Jy S—plane
=i, E+jm,
B A
C |
0 K3 x
C D
*771'/].771) ‘Efj’?l)

Fig. 4. Contour taken on the complex plane s used in
computing the inverse Laplace integrals.

Then, it can be shown that the contributions of the
line integral along a path ABCD, say C,, indicated by
a solid line in Fig. 4, vanish in the limit when 7, ap-
proaches infinity:

lim F(s)Y(s)estds — Q.

Mp—> R Cp

(44)

Next, the residue for the pole jw of F,(s) in (41) is
given as

¢g = Eo Yt(jw)ej‘"t. (4:5)

The pole s, of Y,(s) is determined by

coth T'r(s,)l = — 4. (46)
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Rewrite (46),
€xp [ZPL(Sn)l] =

A - 1 ZL - AZ() 2

= 7u~—> =R:. (47
44+1 Zi+ 7
R, defined by (47), represents the reflection coefficient
at the boundary surface a or b. Therefore, if we set as

R=¢lr (48)

then L. denotes the reflection loss at those boundary
surfaces. Using the foregoing relation, (47) becomes

I(s,)l = — L, + jur. (49)

Remembering that, in the most practical cases,
e>>’x(s)|, the pole s, can be written, with the aid of
(15), as

$a = 2(anl — L)) + jwn. (50)
The residue for this pole .S, is
_ 1)nE eSnt
o ( ’ (51)

"B Ui — o)

Similarly, the residue for the pole of F.(s) in (42) is
given by
& = BV, (jw)er! (52)
and for the pole of ¥,(s),
Eoesnt

~ BT (s)isn — jo)

Pr (53)
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According to the Cauchy fundamental integral theorem,
the closed line integral along a closed contour AB(CDA
can now be given by the sum of all these residues en-
closed. On the other hand, the contributions along a
path C, vanish in the limit when 7, approaches infinity
as shown in (44). Accordingly,

tHi

Iim F(s)Y(s)estds

np— R

F($)V(s)estds = f

E—jw
= 21j2(¢ + p). (54)

Finally, substituting (45) and (51) or (52) and (53) into
the foregoing equation, the transmitted and reflected
electric fields can be expressed in terms of the function
of time as follows:

Et) = BV (jw)eiot + D, (—1)nE, et
E,() = EoV.(jw)eit + >, Eneent,

(55)
(56)
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Characteristics of Loaded Rectangular Waveguides

Y. MUSHIAKE, SENIOR MEMBER, IEEE, AND T. ISHIDA

Abstract—Electromagnetic fields of a rectangular waveguide
with an arbitrarily loaded slab are theoretically analyzed. Eigen-
values for the transmission modes are presented in the form of
universal eigenvalue charts. Electric field distributions in the loaded
waveguide are obtained theoretically, and they are compared with
the results of measurements. Power attenuation is also discussed,
and attenuation charts that give the lowest limitation for the attenu-
ation are shown. As an example of application the attenuation char-
acteristics of waveguide resistance attenuators are investigated,
and a new interpretation is derived for the phenomena where the
curves of attenuation characteristics have sharp peak points.
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I. INTRODUCTION

tangular waveguide loaded with a dielectric slab or
resistive strip at the center of the waveguide
parallel to the electric field have already been analyzed
by several investigators [1]-[4]. However, the char-
acteristics for a general case where the slab with an arbi-
trary admittance is loaded at a place with various
distances from the side wall have not been given [5].
The purpose of this paper is to present such character-
istics of the waveguides with some charts that show the
dependence of the characteristics tc the various
parameters.

THE TRANSMISSION characteristics of a rec-



